Quantum Mechanics of Water Adsorption

Nicholas M Harrison C164a nicholas.harrison@imperial.ac.uk

MRES Adv Topic, ICL, Feb 2005

Plan

A case study of first principles molecular dynamics used to study the adsorption of water on an oxide surface.

- A brief reminder of the underlying theory DFT, plane waves and pseudopotentials
- TiO₂ (110) bulk electronic structure expectations for the surface
- Water adsorption!
 What do we know from experiment?
 Structural model
 The use of molecular dynamics

DFT: $E[\rho]$ – The Kohn Sham Approach

Write the density in terms of a set of N non-interacting orbitals...

$$\rho(\mathbf{r}) = \sum |\phi_i(\mathbf{r})|^2$$

The non interacting kinetic energy and the classical Coulomb interaction

$$T_s[\rho] = -\frac{1}{2} \sum_{i}^{N} \left\langle \phi_i \middle| \nabla^2 \middle| \phi_i \right\rangle \qquad E_H[\rho] = \frac{1}{2} \int \frac{\rho(\mathbf{r}_1) \rho(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_1 d\mathbf{r}_2$$

Allow us to recast the energy functional as:

$$E[\rho] = T_s[\rho] + E_{ext}[\rho] + E_H[\rho] + E_{xc}[\rho]$$

Where we have introduced

$$E_{xc}[\rho] = (T[\rho] - T_s[\rho]) + (E_{ee}[\rho] - E_H[\rho])$$

Variation Theorem => Kohn Sham Equations

Vary the energy with respect to the orbitals and

$$\left[-\frac{1}{2} \nabla^2 + v_{ext}(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + v_{xc}(\mathbf{r}) \right] \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r})$$

$$V_{\chi_{\mathcal{C}}}(\mathbf{r}) = \frac{\partial E_{\chi_{\mathcal{C}}}[\rho]}{\partial \rho(\mathbf{r})}$$

No approximations, So...

If we knew $E_{xc}[\rho]$ we could solve for the *exact* ground state energy and density!

 $Cost - N^3$ in principle but O (N) if locality of chemistry recognised.

Accuracy: Atomisation Energies

	Kurth - m.r.e %	Adamo m.a.e (max) kcal/mol
	20 molecules	G2 set of 148 molecules
LDA	22%	
BLYP	5%	
PBE	7%	17 (51)
НСТН	3%	~
VS98	2%	3 (12)
PKZB	3%	5 (38)
Hybrid	-	3 (20)

Solving the Single Particle Equations

To solve the single particle equations...

- Select a representation for $\psi(r)$
- Build the secular equations
- Solve by minimisation or diagonalisation
- Iterate to self consistency...

A Representation for $\psi(r)$

Alternatives

- 1. Direct representation on a grid $\psi(r_i)$ Potentially very accurate but huge grids required – expensive
- 2. Expansion in a basis set Compact representation, potential for high accuracy, efficient, choose functions for computational convenience. Solve by iteration and diagonalisation or direct minimisation.
 - Linear combination of atomic orbitals
 eg: Gaussians, Muffin-Tin Orbitals (LMTO), Atomic Orbitals...
 - Expansion in plane waves
 - Mixed schemes (PAW, FLAPW, ...)

Here we consider the LCAO (Gaussian's) and the plane-wave method.

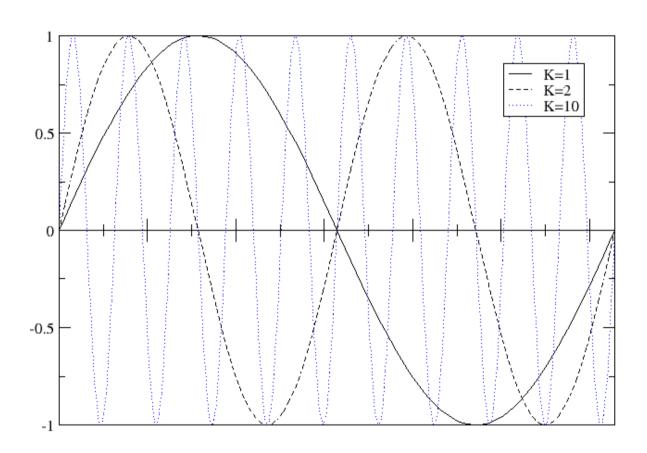
ADELLIN SECUL

Plane Waves

$$\psi_{j}^{\vec{k}}(\vec{r}) = \sum_{K}^{(\vec{k}+\vec{K})^{2} < E_{cut}} C_{j,\vec{K}}^{\vec{k}} e^{-i(\vec{k}+\vec{K}).\vec{r}}$$

- •Systematic improvement with increasing E_{cut}
- •Direct minimisation of the total energy
- •Analytic gradients via Helman-Feynman forces are accurate and cheap
- •Pseudopotentials must be used
- •Large number of basis functions $N\sim10^6$ (especially for heavy atoms).

For example: CASTEP, VASP


Plane Waves - The pseudopotential

 V_{pseudo} is chosen to make ψ_{pseudo} as smooth as possible ie: it can be expanded in a plane waves.

Plane Waves - Systematic Convergence

Plane Waves - The Secular Equation

$$\sum_{\mathbf{k'}} ||\mathbf{k} + \mathbf{K}|^{2} \delta_{\mathbf{k}\mathbf{k'}} + V(\mathbf{K} - \mathbf{K'})| C_{i,\mathbf{k}+\mathbf{K'}} = \varepsilon_{i,\mathbf{k}+\mathbf{K}} C_{i,\mathbf{k}+\mathbf{K'}}$$

Diagonalisation of $[H_{KK'}]$ of order 10^6x10^6 intractable

=> direct minimisation

$$E = \min E(\{\psi_i\})$$

With the constraint,

$$\int \psi_{i}^{*}(\vec{r})\psi_{j}^{*}(\vec{r})d\vec{r} = \delta_{ij}$$

The Problem: Water on TiO₂

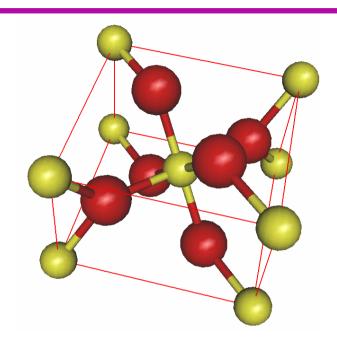
TiO₂

- d⁰ transition-metal oxide, 3 eV band gap, rutile structure
- Widely used as pigment and opacifier (powder), also catalyst and catalyst support

Motivation and background

- Photoelectrolysis of water (Fujishima and Honda, Nature **238** 37 (1972))
- Microcrytalline powders exposed to air
- Water used as experimental probe of the surface

Titanium Dioxide - TiO₂


$$Ti^{4+}$$
 (d⁰)

 Ti^{4+} (d⁰) O^{2-} (s²p⁶)

a 4.594

c 2.958

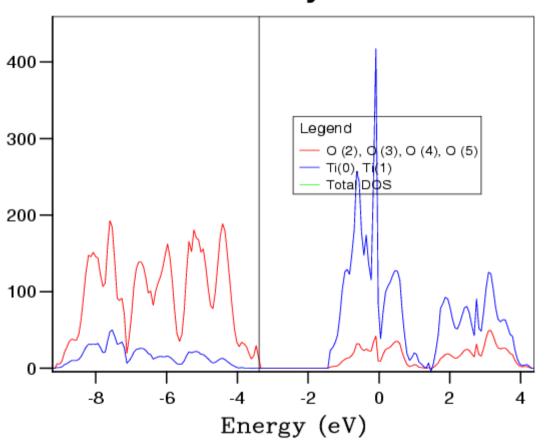
u 0.305

- •Rutile-6, Anatase-6, Columbite-6, Baddeleyite-7 ... Fluorite-8
- Cottunite the hardest known oxide (Nature, April 2001)
- • $Ti_xO_v \rightarrow TiO$, Ti_2O_3 , Ti_4O_7 , Magnelli-Phases
- •Surfaces (100) 1x3, (110) soft vibrations, water chemistry

Bulk Electronic Structure I

Expect a strongly ionic oxide:

 $Ti^{4+}: 1s^2 2s^2p^6 3s^2p^6d^0$


 O^{2-} : $1s^2 2s^2p^6$

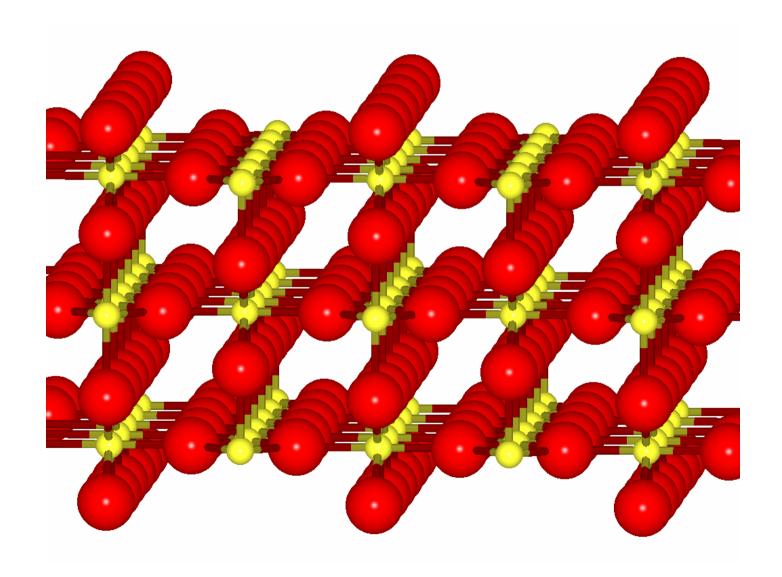
In the solid state these energy levels broaden to form bands.

The energy levels can be summarised as a density of states.

Bulk Electronic Structure - II

TiO2 Density of States

Fermi energy marked as a vertical line


Valence band 0-2p

Conduction band Ti-d

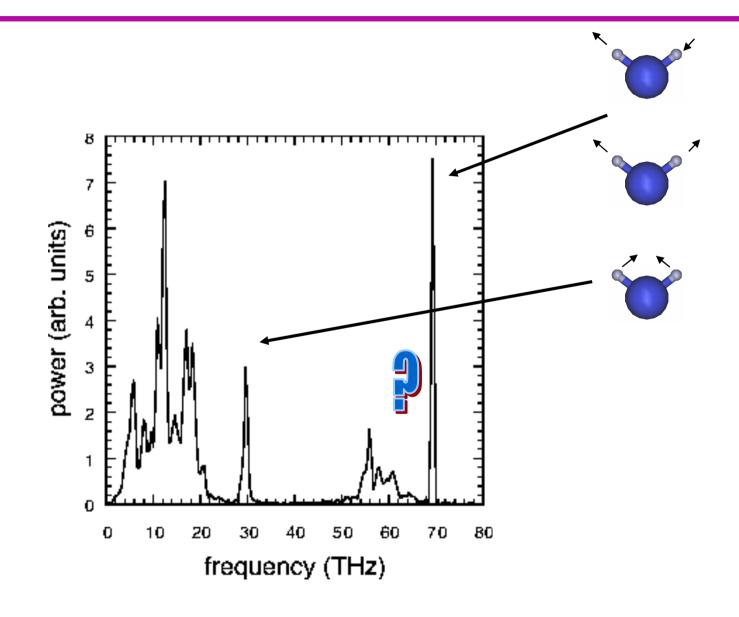
Ionic expectations
realised

The 110 Surface

Water on TiO₂ (110): Interpreting Experiment

Experiment (UPS, TPD, HREELS)

- Dissociation at low coverage
- Predicts presence of molecular H₂O at monolayer coverage (Θ=1)
- No more than 25% of water is dissociated at Θ =1
- Most workers believe defects cause dissociation


and Theory

- Dissociation at <u>all</u> coverages on <u>defect-free</u> surface
- But notably, previous first-principles studies have symmetry constraints and limited structural relaxation
- Little contact with experiment

...were in conflict

The Data... HREELS ... Messy Vibrations

The Plan

Half-coverage (Θ =0.5)

- MD to explore adsorption site and mechanism
- Relate to experiment at "low coverage"

$\Theta = 1$

- Use 2x1 cell and 2 molecules to investigate the effect of intermolecular interactions
- More MD for adsorption site
- Static calculations for adsorption energies
- Consistent with experiment?

Using Molecular Dynamics for Kinetics

Quantum mechanical molecular dynamics allows one to "see" the time evolution of the atomic positions. This is very nice but it is in general **not** an efficient way to study reaction kinetics.

The MD time step is typically 1 femtosecond. Usually energy barriers are high enough that it takes many vibrations before the transition state is reached – the MD is then mostly watching harmonic vibrations for many time steps before the rare event of a reaction.

Usually better to map out the energy surface using a technique like Nudged Elastic Band...

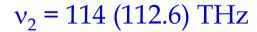
Techniques

DFT Plane-wave pseudopotential method

- Big systems + strong pseudopotentials (Transition-metal + first row) => parallel computers
- Need forces for MD and structural relaxation
- GGA: accurate for H-bond energetics

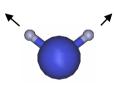
Molecular Dynamics

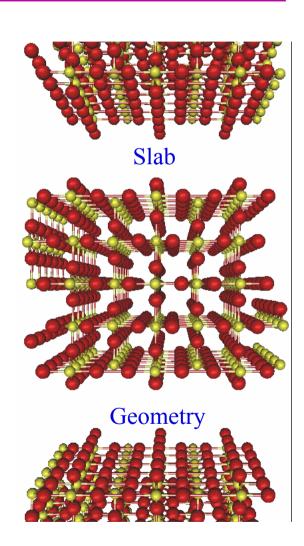
- Good for exploring configuration space of a small molecule on a surface, because
 - -few degrees of freedom
 - -small energy barriers
- Use to calculate vibrational spectra
 - —H-bonded molecules => anharmonic potential
 - Can relate to HREELS


Systems, Preliminaries

KB-pseudopotentials, PW II GGA

• TiO₂ calculated (expt) values: a=4.69 (4.594) c=2.99 (2.959) Å, u=0.306 (0.3050)

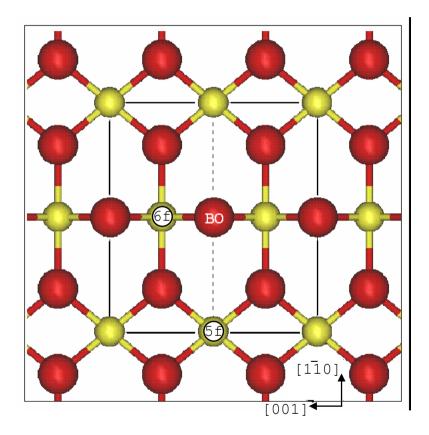




MD Details

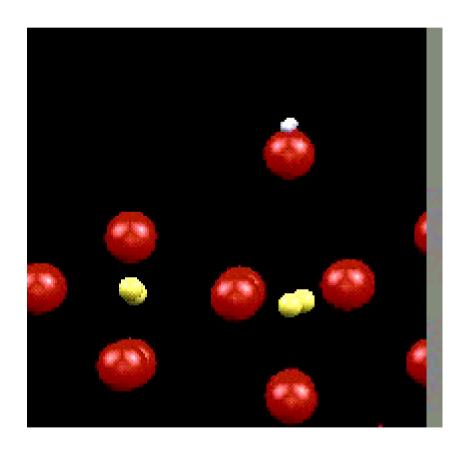
MD: two kinds

- Adsorption simulations
 - Molecule positioned above surface, no initial velocity
 - Allowed to react with surface
- Equilibrium runs
 - Used to calculate frequency spectra
 - —System relaxed and equilibrated
 - -Low T (150 K), 3ps

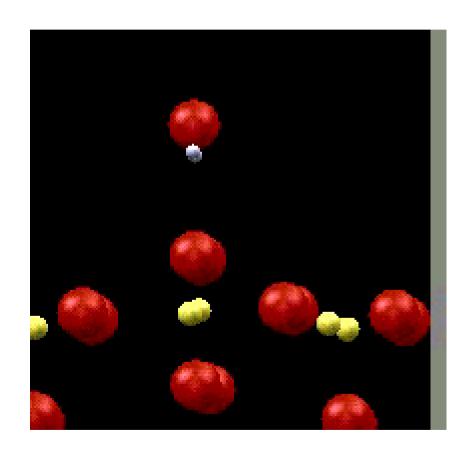

All MD runs

- H mass 3 amu <=> timestep 1.5 fs
- Does not alter equilibrium quantities (e.g. MSD)
- Shift in frequencies (v'_3 = 29 THz) must be corrected in comparisons

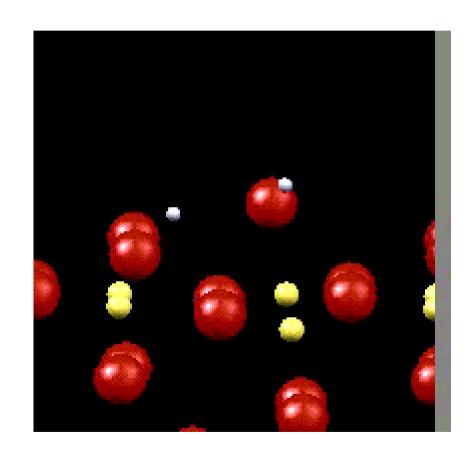
Clean Surface


- 2x1 supercell
- Bridging Oxygen (BO) ridges along [001]
- Fivefold- and sixfold-coordinated Ti (5f, 6f)
- $E_s = 0.69 \text{ Jm}^{-2}$

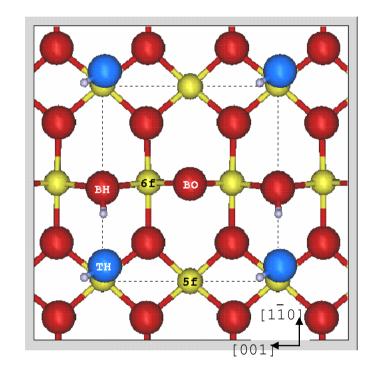
TiO₂ (110): Surface Chemistry


Water adsorption at the 5-fold titanium site

TiO₂ (110): Surface Chemistry II


Water adsorption above the bridging oxygen row

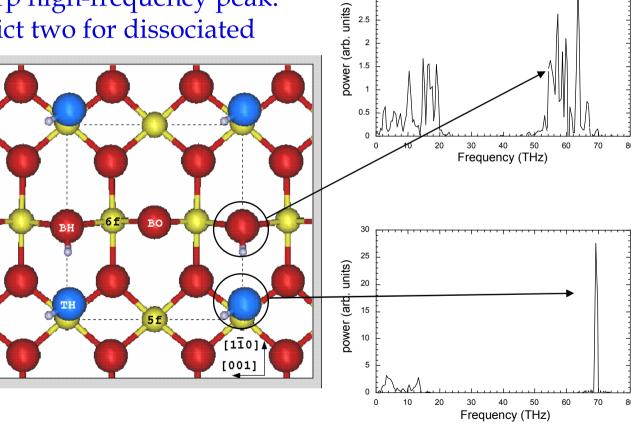
TiO₂ (110): Surface Chemistry III


Half-monolayer water in equilibrium with the surface

Adsorption of 1 molecule in the 2x1 cell

- Several initial configurations tried but adsorption only at the 5f site
- Lowest-energy state is <u>dissociated</u>, adsorption energy E_{OH}=0.91 eV
 - -BH = bridging OH
 - -TH = terminal OH
- Metastable <u>molecular</u> state E_M
 = 0.87 eV

Θ =1: Signature of H-Bonding

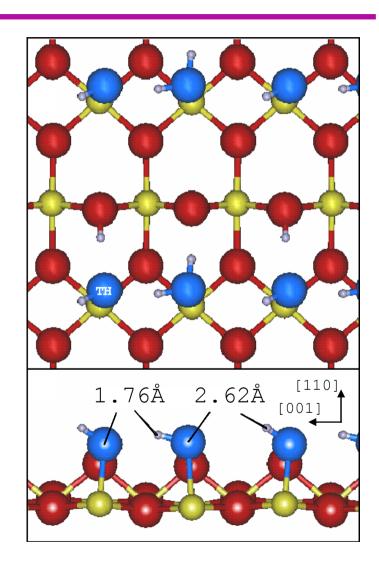

Equilibrium MD for H vibrations

• H-bonding broadens the BH signal

• Only one sharp high-frequency peak:

usual to predict two for dissociated

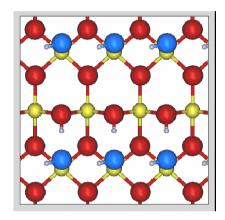
 H_2O

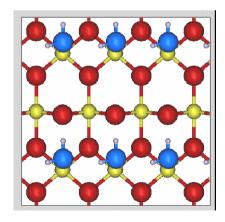


Θ=1: Lowest-Energy State

From the 3 MD runs, adsorption occurs only at the 5f site

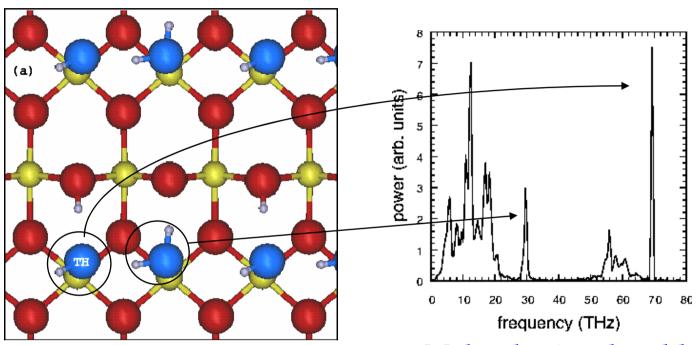
- Mixed dissociative and molecular adsorption!
- Strong H-bonding:
 - -Pulls adsorbates off the 5f sites
 - Displaces bridging-O's
 - Breaks symmetry
 - -Stabilises the molecule
- Adsorption energy $E_{mix} = 1.01 \text{ eV}$


Θ =1: Energetics of Metastable States


• All water dissociated

- Adsorption energy E_{2OH} = 0.91 eV identical to E_{OH} (Θ=0.5)
- Implies zero interaction between OH groups

All water molecular


- Adsorption energy $E_{2M} = 0.99 \text{ eV}$
- $-\underline{\text{Very}}$ close to E_{mix} , at limit of theory

Mixed State: Good vibrations

All features of HREELS spectrum reproduced. Molecules stable at high coverage due to H-bonds.

- Molecule gives bond-bending signal
- TH gives sharp high-frequency peak
 Therefore it is not H-bonded
- All other high-frequency modes broadened by H-bonding

Competing States: a Delicate Balance

- All water dissociated
 - No H-bonding
 - −0.04 eV gained by dissociating from molecular state (ignoring H-bonding)
- All water molecular

$$2x(E_{OH}-E_{M})=0.24 \text{ eV}$$

- −0.12 eV per H-bond
- Verified by calculations on the "net" of molecules
- Mixed State

$$2x E_{\text{mix}} - (E_{\text{M}} + E_{\text{OH}}) = 0.24 \text{ eV}$$

-0.24 eV per H-bond (only one bond)

This is why only one molecule dissociates — there is no advantage in losing all H-bonding interactions

Conclusions

Theory of water chemistry on TiO₂ (110)

- At $\Theta = 0.5$
 - Dissociation favourable
 - H-bonding between the resultant OH groups yields a broadened vibrational spectrum
- At $\Theta = 1$
 - Molecules stabilised by H-bonds
 - -Water in both dissociated and molecular forms?
 - Complete HREELS spectrum reproduced

The consequences of intermolecular interactions <u>must be</u> <u>explored</u> — in previous work, failure to do this led to the wrong conclusions

More Conclusions

- The energetics are delicately balanced
 - —For other materials the conclusions may be different: SnO2 has same rutile structure, lattice parameters 6% bigger. What happens there?
 - Caution with small energy differences
- Interpreting experiments: new framework
- Need more experiments, and more comparisons